Taming Large Classifiers with Rule Reference Locality
نویسندگان
چکیده
An important aspect of packet classification problem on which little light has been shed so far is the rule reference dynamics. In this paper, we argue that for any given classifier, there is likely a significant skew in the rule reference pattern. We term such phenomenon rule reference locality, which we believe stems from biased traffic pattern and/or the existence of “super-rules” that cover a large subset of the rule hyperspace. Based on the observation, we propose an adaptive classification approach that dynamically accommodates the skewed and possibly time-varying reference pattern. It is not a new classification method per se, but it can effectively enhance existing packet classification schemes, especially for large classifiers. As an instance, we present a new classification method called segmented RFC with dynamic rule base reconfiguration (SRFC+DR). When driven by several large real-life packet traces, it yields a several-fold speedup for 5-field 100K-rule classification as compared with another scalable method ABV. In general, we believe exploiting the rule reference locality is a key to scaling to a very large number of rules in future packet classifiers.
منابع مشابه
Taming the Leibniz Rule on the Lattice
We study a product rule and a difference operator equipped with Leibniz rule in a general framework of lattice field theory. It is shown that the difference operator can be determined by the product rule and some initial data through the Leibniz rule. This observation leads to a no-go theorem that it is impossible to construct any difference operator and product rule on a lattice with the prope...
متن کاملDesign of a Model Reference Adaptive Controller Using Modified MIT Rule for a Second Order System
Sometimes conventional feedback controllers may not perform well online because of the variation in process dynamics due to nonlinear actuators, changes in environmental conditions and variation in the character of the disturbances. To overcome the above problem, this paper deals with the designing of a controller for a second order system with Model Reference Adaptive Control (MRAC) scheme usi...
متن کاملLearning Classifier Systems using the Cognitive Mechanism of Anticipatory Behavioral Control
A classifier system is a machine learning system that learns a collection of rules, called classifiers. Mostly, classifiers can be regarded as simple stimulus-response rules. A first level of learning called credit assignment level, consists of reinforcement learning on these classifiers. A classifier is reinforced in dependence on the result of an interaction between the CS and its environment...
متن کاملFault Detection of Bearings Using a Rule-based Classifier Ensemble and Genetic Algorithm
This paper proposes a reduct construction method based on discernibility matrix simplification. The method works with genetic algorithm. To identify potential problems and prevent complete failure of bearings, a new method based on rule-based classifier ensemble is presented. Genetic algorithm is used for feature reduction. The generated rules of the reducts are used to build the candidate base...
متن کاملNearest Neighbors with Learned Distances for Phonetic Frame Classification
Nearest neighbor-based techniques provide an approach to acoustic modeling that avoids the often lengthy and heuristic process of training traditional Gaussian mixturebased models. Here we study the problem of choosing the distance metric for a k-nearest neighbor (k-NN) phonetic frame classifier. We compare the standard Euclidean distance to two learned Mahalanobis distances, based on large-mar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003